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ABSTRACT 
 

The localization of a mobile vehicle in a dynamic outdoor 
environment is a very hard task that requires robust data 
processing and interpretation. This paper proposes a 
localization device, based on both image processing and 
stochastic evaluation. As far it is concerned the data 
processing task is performed by a vision device that uses 
a principal component analysis in order to find out the 
most probable position of the mobile vehicle considering 
the image acquired. This vision device works in parallel 
with a stochastic position evaluation that uses Partiall y 
Observable Markov Decision Process where the 
observation probabili ty is conditioned by the results of 
the vision device. The method developed in this paper 
seems to give very satisfying results compared with 
standard methods and particularly neighborhoods based 
ones. 
 
Keywords: Partially Observable, Markov Decision 
Processes, Karhunen-Loeve Transform, Principal 
Component Analysis, Computer Vision, Mobile Vehicle, 
Robotics. 

1. INTRODUCTION 

 
The processing of a large amount of information 

delivered by multiple acquisition devices is one of the 
key issue in robotics localization. Moreover, mobile 
vehicles and robotic applications are prone to drifts on 
account of the inaccuracy of their sensors and their 
actuators. Such systems need to take those uncertainties 
into account to produce an autonomous and reliable 
robot. The localization device developed in this paper is 
based on data fusion using both computer vision 
processing and stochastic position estimation. This 
method provides an effective and relative low-cost 
system which can be used in order to ensure a robust 
navigation. 

The localization can be considered as the 
determination of the position of a mobile vehicle 
considering the known absolute localization of several 
beacons. Those ones can be physical such as doorsteps 

for instance, or artificial such as features extracted from 
sensors acquisition. Among this localization methods, we 
can notice stereoscopic vision devices ([4] and [5]). The 
major drawbacks of the stereoscopic methods are the 
sensibility of the results considering the calibration phase 
of the cameras and their computational cost which 
requires the use of DSP (Digital Signal Processor) in 
order to obtain real time processing. By contrast, beacons 
algorithms are low cost and reliable but they require the 
modification of the environment or the use of other 
mobile vehicles with a known absolute position.([3]).  

In order to overcome these drawbacks, we propose, in 
this paper, an approach based on a Principal Component 
Analysis (PCA) or Karhunen-Loeve Transform which is 
a very low cost classification algorithm already used in 
face recognition and robotics([1] and [2]). The PCA is 
divided into a preprocessing stage, that structures the 
initial database by computing a representation of the 
environment called the space model, and a recognition 
stage which uses this model to extract the most probable 
position of the robot. Even if the results are acceptable in 
an indoor structured environment, the use of PCA is not 
accurate enough to be sole the basis of localization 
system. Indeed, successive recognition tasks can lead to 
very different estimations of the position due to the 
sensibility of the Principal Component Analysis to the 
light exposure variations.  

On account of the limitation of the PCA method, the 
vision algorithm has been enhanced with interpretation 
and anticipation on the moves of the robot by first using a 
neighborhood (static or dynamic) and second using a 
Markov based position estimator. Markov models and 
particularly Partially Observable Markov Decision 
Processes (POMDP) have already been widely used in 
robotics ([6]) especiall y in robot navigation. The POMDP 
brings an estimation of the position of the mobile vehicle 
by taking into account the previous probable positions of 
the robot, its previous moves considering a transition 
probabili ty and an observation probabil ity. The 
originality of the approach developed in this paper is the 
use of the vision algorithm in order to update the 
probabili ty of the Markov model. 

 



The following paragraph explains the main key 
elements of the Principal Component Analysis. Then part 
3 describes the use of the topology in order to overcome 
the main drawbacks of the vision method through the use 
of two neighborhoods methods based on static and 
growing neighborhoods. Part 4 explains the use of 
Markov models in the localization task. And eventually 
part 5 deals with some experimental results.  
 

2. SINGLE USE OF THE VISION 
ALGORITHM 

The principles of the PCA 
 
The aim of Principal Component Analysis (or 

Karhunen-Loeve Transform) is to sort out 
multidimensional and homogenous data. This sort is 
made through the determination of the discrimination 
axis of the data base by computing the covariance matrix 
of the system. The classification between the elements of 
the data base is performed by interpreting their weight 
vectors which are the projections of the elements on the 
discrimination axes. Consequently, the comparisons 
aimed at classifying the data are made in the eigenspace 
of the system by using only the weight vectors. The 
extend of this method to a set of images requires an 
adaptation. It has to be assumed that an image can be 
represented as a point in a n-dimensional space where n is 
the number of pixels in the image. Considering the 
principle of the algorithm, the set has to be composed of 
homogenous images in term of size and gray level range. 

This method has the great advantage to make the 
comparison between the images by taking into account 
only general properties instead of classical methods, such 
as stereovision algorithms, that compare with only some 
key elements of the images. Furthermore, the PCA based 
algorithm has a very low computational cost, since the 
comparisons are performed with the weight vectors. This 
technique seems to be very competitive compared with 
the standard ones, and thus can be used on a large range 
of mobile platforms in order to obtain a real time 
processing even on standard computers. 

The algorithm is spli t into two parts. The first one is 
the construction of the space model that requires the 
computation of the covariance matrix of the system and 
its eigen-elements. Then, the weight vectors of the 
images are computed by using the eigenvectors matrix. 
This information (eigenvectors, weight vectors, mean 
image of the base) is saved as a structured space model. 
As explained before, the recognition task is performed by 
using the weight vectors of the images. As a result, the 
first stage of the recognition is a projection of the 
unknown image in the eigenspace. Then the unknown 
weight vector is compared with the weight vectors of the 
database. It is assumed that the more probable position of 
the robot corresponds to the nearest image of the initial 
set. 

First tests with a single vision device 
 

The single use of PCA for the localization of a mobile 
vehicle raises some issues. Indeed, the first idea 
considered consisted to find in the database the picture 
whose distance to the image acquired by the camera was 
the smallest and to assume the state of the robot was the 
corresponding state. However, such a method didn't take 
into account the previous estimated state of the robot to 
evaluate its new pose. It resulted in teleportation 
phenomena : the localization system allowed the robot to 
cross the entire environment, in a single time step which 
was of course not realistic. Besides, a search through the 
whole database was needed, thus requiring a high amount 
of time that could be reduced by a search related to the 
area in which the robot was supposed to be. 

The results obtained with this method without any 
enhancement are acceptable provided the lighting 
conditions are well controlled. In such a case, the 
recognition rate is near 36% in a slightly ambiguous 
environment. By contrast, when the environment is semi 
opened (i.e. when the light is both natural and artificial), 
the results sink up to 10%. 

3. INCLUDE TOPOLOGY 
 
To improve the system, the next method relies on the 

introduction of the topology of the environment in the 
localization algorithm. To this way, each element of the 
database is tied with a neighborhood of seven images 
corresponding to the states the vehicle can reach after one 
of its elementary moves, taking into account that the 
robot can drift and move away from its trajectory by a 
small translation or rotation. The estimated state of the 
robot has to be chosen among the neighborhood centered 
on the assumed position of the robot. The figure 1 
presents such a neighborhood. On this figure, each big 
square represents a position of the robot and each small 
square one of  its eight possible orientations. The black 
dot corresponds to the supposed position of the robot. 
Eventually, gray dots constitute the neighborhood in 
which the robot is assumed to be. 

 
 

 
 

Figure 1: The neighborhood used to force the 
recognition of the position of the robot. 

 
Unfortunately, since the recognition task forces the 

estimation, as soon as the vehicle fails to estimate its real 
pose, the neighborhoods don't include the effective state 
and the robot is definitively lost. This Method can be 
improved by the use of dynamical neighborhoods which 
grow whenever the robot estimates its state is not sure 



enough or in other words, when the smallest distance 
between the image perceived and the set of pictures of the 
neighborhood is above a certain threshold. 

 
Nevertheless, this algorithm is not flawless. Indeed, it 

is based on a threshold value, which has a big influence 
on the results and the way this factor is determined is the 
real weakness of the growing neighborhood method : the 
distance criterion under which the robot considers it is 
lost, is currently empirically tuned requiring a lot of 
manipulations to be adapted to the environment. 

 

4. MARKOV MODELS 

MDP and POMDP models  
 
In order to avoid the requirement of parameters that 

has to be evaluated through experiments, a localization 
estimator of the robot has been developed. Contrary to 
the previous methods which were only looking for 
possible states without further information, this method 
consists to evaluate recursively the probability 
distribution among the positions of the entire 
environment for the vehicle to attain a specific state 
considering the moves it has undertaken. In order to 
estimate the probabili ty for the vehicle to be in a 
particular state, the algorithm presented in this paper is 
inspired  by Simmons and Koenig method ([6]) and is 
based on Markov models. 

A Markov Decision Process (MDP) is a probabili stic 
automaton : a start state and a given action could lead to 
different states according to a probabil ity distribution. A 
Markov model is specified as:  

• S, a finite set  of states : in our case, those 
states are the different poses of the robot  

• A, a finite set of actions that can be executed in 
each state : " go forward ", " turn left ", " turn right " for 
our robot 

• T[s'|s,a], a probabilit y distribution. 
 

The Matrix T which gives the probability for the 
system, making a known action a, from a known state s, 
to arrive in the state s' determines the result of all the 
actions undertaken. One of the key characteristic of 
systems ruled by MDP, is that they must constantly have 
knowledge of their true state, which is the purpose of our 
application, by an accurate and complete perception of 
their environment. That is why, MDP not fitting our goal, 
a generalization of Markov  Decision Process is required: 
POMDP (Partiall y Observable Markov Decision Process 
). Henceforth, the real state of the system is not known 
but the robot can have some belief about its real pose : it 
could now make observations and gathers clues in order 
to guess its state. A POMDP consists of : 

• A MDP ( a set of states S, a set of actions A and 
a probabil ity distribution T) 

• O, a set of observations. 
• P[o s], the probabili ty distribution of observing 

o in state s. 
 

This model furnishes estimations, called "belief 
states", of the real pose of the robot. Those belief states 
B(t,s) contain the probability at each step t, for each state 
s, to be the effective state of the vehicle. They are 
assessed by taking into account the action taken by the 
robot, the observation made and the former probability 
distribution, thus, considering the history of the robot's 
moves. This is the aim of the following equation :  
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Equation 1 
 

First step: Using a Pseudo-MDP based method. 
 

Markov models can be used as an assistant for the 
recognition system : from the actions the vehicle has 
made and the knowledge of its starting state, it wil l 
furnish to the recognition system a neighborhood which 
contains the effective state of the robot. From this 
consideration, a "Pseudo-Markov Decision Process " is 
used to evaluate iteratively the possible positions of the 
robot in the entire environment without taking the 
information it can perceive into account. The expression 
of the new evolution law is then reduced to the below 
equation. 
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Equation 2 

 
From a known belief states, equal to 0 in everywhere 

except in the robot's starting state, the system evaluates 
step by step belief states at time t. The real pose of the 
robot is assumed to be among the states whose belief 
state is high ( a threshold has been set, under which the 
state is not taken into account for the recognition task), 
forcing the estimated pose to be included in this set of 
states.  At first, results are promising because it reduces 
the search with the certainty the true pose of  the robot is 
still among the considered states. However, in the long 
run, due to the absence of recalibration by extracting 
information from the environment perceived, belief  
states become uniform and the recognition task tend to 
search in the whole database. 

 



Second step: Using a POMDP based method 

 
Nevertheless, the algorithm presented in the previous 

chapter can be improved by adding  a feedback loop. 
Henceforth, the results of the image processing module 
are used as observations to perform an efficient 
recalibration of the robot. In order to link this distance to 
observations in a POMDP, the law of update of the belief 
state has to be modified on the basis of the following 
consideration: if the distance between the image acquired 
by the camera and the image of the database 
corresponding to the state s is short, the robot has great 
chance to be in the corresponding state and the 
probability for s to be the effective state, or , in other 
words,  the belief state of state s, must be reinforced. On 
the contrary, if the distance is high, the same probability 
should drop. To that way, the probability of observation o 
(P(o,s)) has been replaced by a coefficient proportional to 
the inverse of the distance between the image perceived 
and the image associated to the state s of the vehicle. 
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As it is highlighted by the experimental results, this 

Markov based localization system is more eff icient for 
locating our robot. This fact can be explained by the 
following points.  At first, because belief states at time t 
are updated from belief states at time t-1, the system 
bears in mind the information it can extract from history. 
Thus, even if the system failed to estimate rightly the 
effective state of the robot, it can nevertheless be 
assumed that the belief state corresponding to the true 
state of the mobile vehicle is high and that, after the next 
time step, it is highly probable the new image perceived 
will allow the system to clear up the ambiguity. Besides, 
this method permits to avoid the "sensor aliasing" 
problem : in a uniform indoor environment, two states 
can generate nearby observation. It is then quite diff icult, 
from sole observation to determine where the robot might 
be. Our system takes the information contained in the 
history of the moves, kept throughout the belief state into 
account and merges it with the results obtained by the 
image processing module. So, if probabil ities of 
observation are similar, the system wil l more rely on 
history to determine where the vehicle might be. 
Eventually, li ke in the previous method, it is also possible 
to lead the search in the database, accelerating the task by 
reducing the extent of the search. 

 
As it appears in experimental results, the system we 

have developed is characterized by its robustness. The 
robot, even if it is totally lost in the environment, can be 
located in few steps.  

5. IMPROVE THE SYSTEM BY ADDING 
NEW DEVICES 

 
To enhance this already robust system, a second video 

device whose axis is perpendicular to the translation axis 
of the robot has been added as it is depicted in [1]. This 
new camera furnishes a new amount of information non 
correlated to the information acquired by the first one. 
The vehicle gathers more hints to evaluate where it might 
be. That is why its estimation should be more eff icient 
and accurate. Besides, it is easy to include these new 
information in the Markov model by considering new 
observation : henceforth, it consists in a couple of 
distances. The first distance is furnished by the PCA 
module applied on the image obtained by the first 
camera, the second is the result of the same module but 
applied to the image acquired by the second camera. The 
product of the inverses of the distances has now the role 
of probabili ties of observation for our model. Moreover 
POMDP take into account the relevancy of a piece of 
information. Indeed, when information is not pertinent, 
the distribution of probabil ities of observation tends to be 
uniform and belief states are thus not highly modified by 
it. On the contrary, when information is relevant, few 
states will be highly reinforced. Ultimately, the new data 
can be processed by the existing PCA module and , 
because the environment is the same, the database is still 
adapted, thus requiring no additional development.  

 

Figure 2 : The position of the two cameras 

 
Images provided by this new camera improves the 

eff iciency of our localization system. Especiall y when the 
robot goes forward, since a small movement leads to an 
important  modification of the picture acquired by the 
second camera. For example, it is particularly pertinent 
when the robot advances in a long corridor. 

6. EXPERIMENTAL RESULTS 

The test base 

 
The test area is an 18-squared meter area with a lot of 

windows and a high reflective ground (fig 3 presents 
some pictures of the test area). Moreover, the lighting 
condition are not controlled because it depends on the sun 
exposure. This environment can be considered to be 
semi-opened (i.e. it is structured as an indoor 
environment but the lighting condition are similar to 
outdoor).  



The test area has been divided into squared state (1 
meter by 1 meter) tied each with 8 sub states that 
correspond to the eight natural orientations. 
 

 

Figure 3 :  Some pictures of the test base 

 
In order to perform the test, a second base (144 

pictures) has been constructed with other lighting 
condition and shift position compared with the previous 
database. 
 

Comparison of the four methods 
 

The tests were made by using a simulation program 
that takes into account the inaccuracy of the effectors of 
the mobile vehicle(i.e. actions are made at each step and 
their result is determined by a transition probability 
computed from data from various real robots). We 
performed the same sequence for the four methods by 
counting the number of failures in the position estimation 
and the number of good recalibrations of the robot after 
the loose of the real position at the previous step. The 
figure 4 shows the rate of bad estimations obtained by the 
neighborhoods methods (static and growing 
neighborhoods) and by the Markov based method (with 
one or two cameras). 
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Figure 4 : Rate of bad estimations 

The results obtained after the first test point out a 
small bad rate estimation for the POMDP method with 
both one and two cameras. (10% better for the two-
camera method). The static neighborhood method shows 
very bad results whereas the growing neighborhoods ones 
are stil l acceptable. 

 
The figure 5 presents the eff iciency of the four 

methods. The efficiency is computed by making a 
comparison between the rate of bad estimation and the 
number of recalibration success. 
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Figure 5 : Efficiency of the different methods 

 
Even if the growing neighborhoods method and the 

POMDP based methods are similar for the results 
presented in this section, the first method is less reliable. 
Indeed, the Markov-based method are not tied to 
empirical threshold, thus allowing a better adaptation 
skill in various environments.  

Eventually, the addition of a second camera is 
encouraging since the system is then less prone to failures 
in estimating the pose of the vehicle. The drop of the 
"eff iciency” of the last system can first seem intriguing 
but can be explained. Indeed, a robot with two cameras 
fails to estimate its effective state when the situation is 
intricate, it is, then, more difficult for the system to 
recover the pose of the vehicle  



7. CONCLUSION 

 
We succeeded in developing a new powerful 

algorithm whose goal was to recognize the location of a 
mobile robot in a structured environment. The main 
advantages are, on the one hand its low cost at both 
software and hardware levels and, on the other hand, its 
largely satisfying success rate. The on-line recognition 
process is very competitive compared to the current 
algorithms. Moreover, the use of cameras to determine 
the pose of the robot allows to consider an exploitation of 
the algorithm in parallel with other vision modules li ke 
stereovision module for instance. Furthermore, the 
processing time of this method makes it possible for its 
use on low power mobile platform. 

Considering the good results of the Markov based 
approach, further research will be performed. It can 
consist to improve the Markov model. For now, we have 
focused on the inverse function, but it might be 
interesting to study different adapted functions to link the 
observation to the results of the PCA. We can also 
imagine to modify the image processing module : the use 
of "incremental PCA", which constructs and structures its 
own database of images, adding a new picture whenever 
the vehicle observes an image corresponding to a state 
that has not been yet explored, seems to be promising. It 
would allow to avoid the requirement of a preliminary 
database of images meant to be representative of the 
environment which was the main drawback of the 
algorithm we have presented. 
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